DSI10402_ST25.txt SEQUENCE LISTING

	•													
<110>	Cosenza, Lawrence W.													
<120>	SACROMASTIGOPHORIC THERAPEUTIC AGENT DELIVERY SYSTEM													
<130>	DSI-10402/22													
<140> <141>	us 10/735,203 2003-12-12													
<150> <151>	US 60/433,269 2002-12-13													
<160>	31													
<170>	PatentIn version 3.4													
<210> <211> <212> <213>	1 58 DNA Artificial													
<220> <223>	Primer for echovirus 1 VP1 protein													
<400> aattat	1 tcga attagcaaga agatattgta ccgaaattaa tacgactcac tatagggg	58												
<210> <211> <212> <213>	DNA '													
<220> <223>	Primer for echovirus 1 VP1 protein													
<400> taaata	2 aagc ggccgcttat tactagtctt tatctccttt gattgtaaat aaaatgtaat	60												
ttacag [.]	tat	69												
<210> <211> <212> <213>	3 42 DNA Artificial													
<220> <223>	Primer for echovirus 1 VP3 protein													
<400> atagcat	3 tggt accaccgaaa ttaatacgac tcactatagg gg	42												
<210> <211> <212> <213>	4 70 DNA Artificial													
<220> <223>	Primer for echovirus 1 VP3 protein													

<400> aatacta	4 agtt cgaaggtagg tagctagcgt atatctcctt tgattgtaaa taaaatgtaa	60
tttaca	gtat	70
<210> <211> <212> <213>	5 43 DNA Artificial	
<220> <223>	Primer for echovirus 1 VP2 protein	
<400> atatta	5 ggcg cgccaccgaa attaatacga ctcactatag ggg	43
<210> <211> <212> <213>	6 67 DNA Artificial	
<220> <223>	Primer for echovirus 1 VP2 protein	
<400> attaat	6 ctgc agatttatag gcgccgtata tctcctttga ttgtaaataa aatgtaattt	60
acagta [.]	t	67
<210> <211> <212> <213>	7 50 DNA Artificial	
<220> <223>	Vectorial cloning primer for echovirus 1 VP1	
<400> gcttca	7 ctag ttctgactgc taagcatggg tgatgtgcag aatgctgtcg	50
<210> <211> <212> <213>	8 38 DNA Artificial	
<220> <223>	Vectorial cloning primer for echovirus 1 VP1	
<400> caaggti	8 tgcg gccgcgatga tcgttgttat tatgttgg	38
<210> <211> <212> <213>	9 41 DNA Artificial	
<220> <223>	Vectorial cloning primer for echovirus 1 VP3	

<400> 9 gcttcgct	ag catgggacta ccgaccatga acacccctgg c	41
<220> <223> V	ectorial cloning primer for echovirus 1 VP3	
<400> 10 cggccatt	0 cg aactactatt ggtaaaaaga tgtttgctc	39
<220> <223> Ve	ectorial cloning primer for echovirus 1 VP2	
<400> 13 gcttcggcg	1 gc catgtctcca acggttgaag agtgc	35
	2 7 NA rtificial	
<220> <223> Ve	ectorial cloning primer for echovirus 1 VP2	
<400> 12 gccggaact	.	37
<210> 13 <211> 40 <212> DN <213> Ar	0	
<220> <223> Ve	ectorial cloning primer for echovirus 1 VP4	
<400> 13 gcttcagat		40
<210> 14 <211> 96 <212> DN <213> Ar	ĵ.	
<220> <223> Ve	ectorial cloning primer for echovirus 1 VP4	
<400> 14 gccatccgg		60
		96

<210> <211> <212> <213>	15 30 DNA Artificial	
<220> <223>	Vectorial cloning primer containing spel restriction site	
<400> gcgcga	15 ctag tctgatggac tgcgacatcg	30
<210> <211> <212> <213>	16 35 DNA Artificial	
<220> <223>	Vectorial cloning primer containing bpullO2I restriction site	
<400> caccca	16 tgct tagcgcgtgt tctttagtgc ccatc	35
<210> <211> <212> <213>	17 27 DNA Artificial	
<220> <223>	Vectorial cloning primer containing avri restriction site	
<400> gctcgc	17 ccgg gatggactgc gacatcg	27
<210> <211> <212> <213>	18 34 DNA Artificial	
<220> <223>	Vectorial cloning primer containing bgl ii restriction site	
<400> gccatco	18 cgga gatctctagt gttctttagt gccc	34
<210> <211> <212> <213>		
<220> <223>	Vectorial cloning primer containing eco ri restriction site	
<400> gcgctga	19 aatt cgatggactg cgacatcg	28
<210>	20 945	

```
<212>
       DNA
       Artificial
<220>
       Recombinant echovirus 1 VP1 shell protein
<223>
<400>
       20
                                                                       60
atgggtgatg tgcagaatgt tgtcgaaggg gctatggtca gggtggcaga tacagtgcaa
acttcagcca caaactcaga gagggtgcct aacttgacag cagtagaaac tggtcacact
                                                                      120
                                                                      180
tcgcaggtag tacctggtga taccatgcag accagacatg tgatcaacaa tcacgtgagg
tcagaatcta caattgagaa cttccttgcc agatcagcgt gtgttttctt gctagagtac
                                                                      240
                                                                      300
aagacaggga ccaaagagga ttccaatagc ttgaacaatg gggtgattac aaccaggcga
gtgggtcaac tacgtataaa actggaaatg tttacttacc tacggtttga catggaaatc
                                                                      360
                                                                      420
accgtggtca ttacaagctc gcaagatcag tctacatcac aaaaccagaa tgcaccagtg
                                                                      480
ctaacacacc agataatgta tgtaccacca ggggggaccca tacccataag cgtggatgat
tacagctggc aaacattcac caaccccagt atcttttgga ccgaagggaa cgctccggca
                                                                      540
cgcatgtcaa ttccatttat taacataggc aatgcgtata gtaatttcta cgatgggtgg
                                                                      600
                                                                      660
tctcacttct cccaggctgg cgtgtatggc ttcactactc tgaacaacat gggtcaattg
                                                                      720
ttcttccggc acgtaaacaa gcccaaccca gccgctatta caagtgtggc gcgcatttac
                                                                      780
ttcaaaccga aacatgtacg cgcttgggtg cctagaccac cgcgcttgtg tccatacatc
                                                                      840
aatagcacga atgtcaactt tgaacccaag ccagtgactg aagtacgtac caacataata
acaacgatca tcgcggccgc acagctgtat acacgtgcaa gccagccaga actcgccccg
                                                                      900
gaagaccccg aggatetega geaceaceat caccateace ateac
                                                                      945
<210>
       21
       843
<211>
<212>
       DNA
<213>
       Echovirus 1
<220>
       gene
       (1)...(843)
<222>
<223>
       Native VP1 shell protein
<400>
       21
ggtgatgtgc agaatgctgt cgaaggggct atggtcaggg tggcagatac agtqcaaact
                                                                       60
tcagccacaa actcagagag ggtgcctaac ttgacagcag tagaaactgg tcacacttcg
                                                                      120
caggcagtac ctggtgatac catgcagact agacatgtga tcaacaatca cgtgaggtca
                                                                      180
gaatctacaa ttgagaactt ccttgccaga tcagcgtgtg ttttctacct agagtacaag
                                                                      240
                                                                      300
acagggacca aagaggattc caatagcttc aacaattggg tgattacaac caggcgagtg
                                                                      360
gctcaactac gtagaaaact ggaaatgttt acttacctac ggtttgacat ggaaatcacc
```

DSI10402_ST25.txt	
gtggtcatta caagctcgca agatcagtct acatcacaaa accagaatgc accagtgcta	420
acacaccaga taatgtatgt accaccaggg ggacccatac ccgtaagcgt ggatgattac	480
agctggcaaa catccaccaa ccccagtatc ttttggaccg aagggaacgc tccggcacgc	540
atgtcaattc catttattag cataggcaat gcgtatagta atttctacga tgggtggtct	600
cacttctccc aggctggcgt gtatggcttc actactctga acaacatggg tcaattgttc	660
ttccggcacg taaacaagcc caacccagcc gctattacaa gtgtggcgcg catttacttc	720
aaaccgaaac atgtacgcgc ttgggtgcct agaccaccgc gcttgtgtcc atacatcaat	780
agcacgaatg tcaactttga acccaagcca gtgactgaag tacgtaccaa cataataaca	840
acg	843
<210> 22 <211> 792 <212> DNA <213> Artificial	
<220> <223> Recombinant echovirus 1 VP2 shell protein	
<400> 22 atgtctccaa cggttgaaga gtgcgggtac agtgacaggg tcaggtcaat cacacttggg	60
aactccacta ttacaactca agagtgtgcc aatgtggtgg tggggtacgg tgaatggcct	120
gagtatctga gtgataacga ggcaactgct gaggaccaac caacgcagcc ggacgtggcc	180
acttgccgtt tttacaccct agactcagtc caatgggaga atgggtcacc aggttggtgg	240
tggaagtttc ccgacgctct aagggatatg ggattatttg gccaaaatat gtactaccat	300
tacttaggca gagccgggta taccatccac gtacaatgca atgcttccaa gtttcatcaa	360
ggctgtatcc tggtagtgtg tgtccctgag gcggagatgg gaagtgccca aacctcaggg	420
gtggtcaact acgaacacat tagtaagggt gagatcgcat caaggttcac taccacgaca	480
acagcagaag accatggcgt gcaggccgcg gtatggaatg ctggtatggg cgttggagtt	540
gggaacttga cgatcttccc gcaccaatgg atcaaccttc gcaccaacaa cagcgccaca	600
attgttatgc catacgtaaa tagtgtacca atggacaata tgtatagaca tcacaacttt	660
acactaatga taataccctt tgtgcctctg gatttcagcg cgggtgcatc cacatacgtg	720
cccataacgg tgacagtggc ccccatgtgt gccgagtaca atggactacg actagctgga	780
caccaatagt ag	792
<210> 23 <211> 783 <212> DNA <213> Echovirus 1	

<221> gene (1)..(783) Native VP2 shell protein <400> 23 60 tctccaacgg ttgaagagtg cgggtacagt gacagggtca ggtcaatcac acttgggaac 120 tccactatta caactcaaga gtgtgccaat gtggtggtgg ggtacggtga atggcctgag 180 tatctgagtg ataacgaggc aactgctgag gaccaaccaa cgcagccgga cgtggccact 240 tgccgttttt acaccctaga ctcagtccaa tgggagaatg ggtcaccagg ttggtggtgg 300 aagtttcccq acgctctaag ggatatggga ttatttggcc aaaatatgta ctaccattac 360 420 tgtatcctgg tagtgtgtt ccctgaggcg gagatgggaa gtgcccaaac ctcaggggtg gtcaactacg aacacattag taagggtgag atcgcatcaa ggttcactac cacgacaaca 480 540 gcagaagacc atggcgtgca ggccgcggta tggaatgctg gtatgggcgt tggagttggg 600 aacttgacga tcttcccgca ccaatggatc aaccttcgca ccaacaacag cgccacaatt 660 gttatgccat acgtaaatag tgtaccaatg gacaatatgt atagacatca caactttaca 720 ctaatgataa taccctttgt gcctctggat ttcagcgcgg gtgcatccac atacgtgccc 780 ataacggtga cagtggcccc catgtgtgcc gagtacaatg gactacgact agctggacac 783 caa 24 <210> <211> 937 <212> DNA Artificial <220> Recombinant echovirus 1 VP3 shell protein <223> <400> 24 60 atgtgcagaa tgttgtcgaa ggggctatgg tcagggtggc agatacagtg caaacttcag 120 ccacaaactc agagaggtgc ctaacttgac agcagtagaa actggtcaca cttcgcaggt 180 agtacctggt gataccatgc agaccagaca tgtgatcaac aatcacgtga ggtcagaatc 240 tacaattgag aacttccttg ccagatcagc gtgtgttttc ttgctagagt acaagacagg 300 gaccaaaqaq gattccaata gcttgaacaa tggggtgatt acaaccaggc gagtgggtca 360 actacgtata aaactggaaa tgtttactta cctacggttt gacatggaaa tcaccgtggt 420 cattacaaqc tcqcaaqatc agtctacatc acaaaaccag aatgcaccag tgctaacaca 480 ccagataatg tatgtaccac cagggggacc catacccata agcgtggatg attacagctg 540 qcaaacattc accaacccca gtatcttttg gaccgaaggg aacgctccgg cacgcatgtc 600 aattccattt attaacatag gcaatgcgta tagtaatttc tacgatgggt ggtctcactt 660 ctcccaggct ggcgtgtatg gcttcactac tctgaacaac atgggtcaat tgttcttccg

DST10402 ST25.txt

DSI10402_ST25.txt atggcgatat cggtatcaac acagaagacc ggggcgcacg agactagctt gagcgctact	60
ggcaactcca taatacacta cacgaacatt aattattaca aagatgcagc ctctaactct	L20
gccaatagac aagatttcac ccaagacccc gggaagttta ctgaaccaat gaaagatgtc	180
atgataaaaa ccctgccagc gctgaattcg tag	213
<210> 27 <211> 207 <212> DNA <213> Echovirus 1	
<220> <221> gene <222> (1)(207) <223> Native VP4 shell protein	
<400> 27 atgggagcac aggtatcaac acagaagacc ggggcgcacg agactagctt gagcgctact	60
	L20
	.80
<u> </u>	207
<210> 28 <211> 1047 <212> DNA	
<213> Homo sapiens	
<300>	
·	ıan
<pre><300> <301> Hatada,S., Seed,J.R., Barker,C., Hajduk,S.L., Black,S. and</pre>	1an 60
<pre><300> <301> Hatada,S., Seed,J.R., Barker,C., Hajduk,S.L., Black,S. and</pre>	
<pre><300> <301> Hatada,S., Seed,J.R., Barker,C., Hajduk,S.L., Black,S. and</pre>	60
<pre><300> <301> Hatada,S., Seed,J.R., Barker,C., Hajduk,S.L., Black,S. and</pre>	60 L20
<pre><300> <301> Hatada,S., Seed,J.R., Barker,C., Hajduk,S.L., Black,S. and</pre>	60 L20 L80
<pre><300> <301> Hatada,S., Seed,J.R., Barker,C., Hajduk,S.L., Black,S. and Maeda,N. <302> No trypanosome lytic activity in the sera of mice producing hum <303> Mol. Biochem. Parasitol. <304> 119 <305> 2 <306> 291-294 <307> 2002-02-01 <313> (1)(1047) <400> 28 atgagtgacc tgggagctgt catttccctc ctgctctggg gacgacagct ttttgcactg tactcaggca atgatgtcac ggatattca gatgaccgct tcccgaagcc ccctgagatt gcaaatggct atgtggagca cttgtttcgc taccagtgta agaactacta cagactgcgc acagaaggag atggagtata caccttaaat gataagaagc agtggataaa taaggctgtt ggagataaac ttcctgaatg tgaagcagta tgtgggaagc ccaagaatcc ggcaaaccca </pre>	60 120 180 240
<pre><300> <301> Hatada,S., Seed,J.R., Barker,C., Hajduk,S.L., Black,S. and Maeda,N. <302> No trypanosome lytic activity in the sera of mice producing hum compared to the sera of mice producing hum</pre>	60 120 180 240
<pre><300> <301> Hatada,S., Seed,J.R., Barker,C., Hajduk,S.L., Black,S. and</pre>	60 120 180 240 300

							DS	5II.04	102 <u>_</u> S	T25.	txt					
cac	cctaact	acca	ccag	gt a	gata [.]	ttggg	g ct	catc	aaac	tca	aaca	gaa	ggtg	cttgt	t	600
aat	gagagag	tgat	gccca	at c	tgcc	tacci	t tc	aaag	aatt	atg	caga	agt	aggg	cgtgt	g	660
ggt	tacgtgt	ctgg	ctggg	gg a	caaa	gtgad	aa	cttt	aaac	tta	ctga	cca	tctg	aagta	t	720
gto	atgctgc	ctgt	ggctg	ga c	caat	acgat	t tg	cata	acgc	atta	atga	agg	cagca	acatg	c	780
ccc	taaatgga	aggc	accga	aa ga	agcc	ctgta	a gg	ggtg	cagc	cca	tact	gaa	cgaa	cacac	c	840
ttc	tgtgtcg	gcat	gtcta	aa g	tacc	aggaa	a ga	cacc	tgct	atg	gcga [.]	tgc ·	gggca	agtgc	С	900
ttt	gccgttc	acga	cctg	ga ge	gagg	acaco	tg:	gtac	gcgg	ctg	ggat	cct .	aagct	tttga [.]	t	960
aag	jagctgtg	ctgt	ggctg	ga g	tatg	gtgtg	j ta	tgtg	aagg	tga	cttc	cat	ccag	gactg	g	1020
gtt	cagaaga	ccat	agcto	ga ga	aact	aa										1047
<21 <21 <21 <21	1> 348 12> PRT		iens													
<30 <30)1> Hat		., 5	eed,	J.R.	, Bar	rker	,c.,	Најо	duk,	5.L.	, B]:	ack,	s. and	d	
<pre><301> Hatada,S., Seed,J.R., Barker,C., Hajduk,S.L., Black,S. and</pre>																
<40	00> 29															
Met 1	: Ser As	p Leu	Gly 5	Ala	٧a٦	Ile	ser	Leu 10	Leu	Leu	Trp	Gly	Arg 15	G∏n		
Leu	Phe Al	a Leu 20	Tyr	Ser	Gly	Asn	Asp 25	val	Thr	Asp	Ile	Ser 30	Asp	Asp		
Arg	Phe Pr 35		Pro	Pro	Glu	17e 40	Ala	Asn	Gly	Туг	Va1 45	Glu	His	Leu		
Phe	Arg Ty 50	r Gln	Cys	Lys	Asn 55	Tyr	Tyr	Arg	Leu	Arg 60	Thr	Glu	Gly	Asp		
G] y 65	val ⊤y	r Thr	Leu	Asn 70	Asp	Lys	Lys	Gln	Trp 75	IJe	Asn	Lys	Ala	val 80		
Gly	Asp Ly	s Leu	Pro 85	Glu	Cys	Glu	Ala	Val 90	Суѕ	Gly	Lys	Pro	Lys 95	Asn		

Pro Ala Asn Pro Val Gln Arg Ile Leu Gly Gly His Leu Asp Ala Lys 100 105 110

Gly Ser Phe Pro Trp Gln Ala Lys Met Val Ser His His Asn Leu Thr 115 120 125

Thr Gly Ala Thr Leu Ile Asn Glu Gln Trp Leu Leu Thr Thr Ala Lys 130 135 140

Asn Leu Phe Leu Asn His Ser Glu Asn Ala Thr Ala Lys Asp Ile Ala 145 150 155 160

Pro Thr Leu Thr Leu Tyr Val Gly Lys Lys Gln Leu Val Glu Ile Glu 165 170 175

Lys Val Val Leu His Pro Asn Tyr His Gln Val Asp Ile Gly Leu Ile 180 185 190

Lys Leu Lys Gln Lys Val Leu Val Asn Glu Arg Val Met Pro Ile Cys 195 200 205

Leu Pro Ser Lys Asn Tyr Ala Glu Val Gly Arg Val Gly Tyr Val Ser 210 215 220

Gly Trp Gly Gln Ser Asp Asn Phe Lys Leu Thr Asp His Leu Lys Tyr 225 230 235 240

Val Met Leu Pro Val Ala Asp Gln Tyr Asp Cys Ile Thr His Tyr Glu 245 250 255

Gly Ser Thr Cys Pro Lys Trp Lys Ala Pro Lys Ser Pro Val Gly Val 260 265 270

Gln Pro Ile Leu Asn Glu His Thr Phe Cys Val Gly Met Ser Lys Tyr 275 280 285

Gln Glu Asp Thr Cys Tyr Gly Asp Ala Gly Ser Ala Phe Ala Val His 290 295 300

Asp Leu Glu Glu Asp Thr Trp Tyr Ala Ala Gly Ile Leu Ser Phe Asp 305 310 315

Lys Ser Cys Ala Val Ala Glu Tyr Gly Val Tyr Val Lys Val Thr Ser 325 330 335

Ile Gln Asp Trp Val Gln Lys Thr Ile Ala Glu Asn 340 345

<210> 30 <211> 4

```
<212> PRT
<213> Echovirus 1

<220>
<221> misc_feature
<222> (1)..(4)
<223> Echovirus 1 VP4 protein terminal sequence mutant
<400> 30

Met Gly Ala Gln
1

<210> 31
<211> 4
<212> PRT
<213> Echovirus 1

<220>
<221> misc_feature
<222> (1)..(4)
<223> Echovirus 1

<220>
<221> misc_feature
<222> (1)..(4)
<223> Echovirus 1 VP4 protein terminal sequence mutant
<400> 31

Met Ala Ile Ser
```